Convulsant and anticonvulsant effects on spontaneous CA3 population bursts.

نویسندگان

  • Audrey S Yee
  • J Mark Longacher
  • Kevin J Staley
چکیده

This paper analyzes the effects of a convulsant and an anticonvulsant manipulation on spontaneous bursts in CA3 pyramidal cells in the in vitro slice preparation under conditions of low (3.3 mM [K(+)](o)) and high (8.5 mM [K(+)](o)) burst probability. When burst probability was low, the anticonvulsant, pentobarbital, produced the anticipated effects: the burst duration decreased and interburst interval increased. However, when burst probability was high, both anticonvulsant and convulsant manipulations decreased the interburst interval and the burst duration. To reconcile these findings, we utilized a model in which CA3 burst duration is limited by activity-dependent depression of CA3 excitatory recurrent collateral synapses and the interburst interval is determined by the time required to recover from this depression. We defined the burst end threshold as the level of synaptic depression at which bursts terminate, and the burst start threshold as the level of synaptic depression at which burst initiation is possible. Synapses were considered to oscillate between these thresholds. When average burst duration and interburst interval data were fit using this model, the paradoxically similar effects of the convulsant and anticonvulsant manipulations could be quantitatively interpreted. The convulsant maneuver decreased both the burst start and end thresholds. The start threshold decreased more than the end threshold, so that the thresholds were closer together. This decreased the time needed to transition from one threshold to the other, i.e., the interburst interval and burst duration. The anticonvulsant manipulation primarily increased the burst end threshold. This also decreased the difference between thresholds, decreasing both interburst interval and burst duration. This model resolves the paradoxical proconvulsant effects of pentobarbital in the CA3 preparation and provides insights into the effects of anticonvulsants on epileptiform discharges in the human EEG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progressive, potassium-sensitive epileptiform activity in hippocampal area CA3 of pilocarpine-treated rats with recurrent seizures.

Rat hippocampal area CA3 pyramidal cells synchronously discharge in rhythmic bursts of action potentials after acute disinhibition or convulsant treatment in vitro. These burst discharges resemble epileptiform activity, and are of interest because they may shed light on mechanisms underlying limbic seizures. However, few studies have examined CA3 burst discharges in an animal model of epilepsy,...

متن کامل

Effects of diisopropyl phosphorofluoridate (DFP) on CA3 and CA1 responses in rat hippocampus.

Diisopropyl phosphorofluoridate (DFP), an insecticide, is a potent anticholinesterase that binds essentially irreversibly to acetylcholinesterase, resulting in severe, acute neurologic pathology, and less severe, but longer-lasting, delayed neuropathy. We report here on the short-term effects of bath-applied DFP on extracellularly recorded responses from CA3 and CA1 of rat hippocampus. Exposure...

متن کامل

NMDA receptor trafficking at recurrent synapses stabilizes the state of the CA3 network.

Metaplasticity describes the stabilization of synaptic strength such that strong synapses are likely to remain strong while weak synapses are likely to remain weak. A potential mechanism for metaplasticity is a correlated change in both N-methyl-D-aspartate (NMDA) receptor-mediated postsynaptic conductance and synaptic strength. Synchronous activation of CA3-CA3 synapses during spontaneous burs...

متن کامل

Deterministic and stochastic neuronal contributions to distinct synchronous CA3 network bursts.

Computational studies have suggested that stochastic, deterministic, and mixed processes all could be possible determinants of spontaneous, synchronous network bursts. In the present study, using multicellular calcium imaging coupled with fast confocal microscopy, we describe neuronal behavior underlying spontaneous network bursts in developing rat and mouse hippocampal area CA3 networks. Two p...

متن کامل

Desynchronization of glutamate release prolongs synchronous CA3 network activity.

Periodic bursts of activity in the disinhibited in vitro hippocampal CA3 network spread through the neural population by the glutamatergic recurrent collateral axons that link CA3 pyramidal cells. It was previously proposed that these bursts of activity are terminated by exhaustion of releasable glutamate at the recurrent collateral synapses so that the next periodic burst of network activity c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2003